The theory of error-correcting codes
By: MacWilliams, F. J
Contributor(s): Sloane, N. J. A
Material type: 

Item type | Current location | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
![]() |
CENTRAL LIBRARY General Stack (Sahyadri Campus) | 005.717 MAC/T | Available | 09648 | ||
![]() |
CENTRAL LIBRARY Reference (Sahyadri Campus) | Reference | 005.717 MAC/T | Not for loan | 09647 |
Table of Contents:
Chapter 1 Linear Codes.
Chapter 2 Nonlinear Codes, Hadamard Matrices, Designs and the Golay Code.
Chapter 3 An Introduction to BCH Codes and Finite Fields.
Chapter 4 Finite Fields.
Chapter 5 Dual Codes and Their Weight Distribution.
Chapter 6 Codes, Designs and Perfect Codes.
Chapter 7 Cyclic Codes.
Chapter 8 Cyclic Codes: Idempotents and Mattson-Solomon Polynomials.
Chapter 9 BCH Codes.
Chapter 10 Reed-Solomon and Justesen Codes.
Chapter 11 MDS Codes.
Chapter 12 Alternant, Goppa and Other Generalized BCH Codes.
Chapter 13 Reed-Muller Codes.
Chapter 14 First-Order Reed-Muller Codes.
Chapter 15 Second-Order Reed-Muller, Kerdock and Preparata Codes.
Chapter 16 Quadratic-Residue Codes.
Chapter 17 Bounds on the Size of a Code.
Chapter 18 Methods for Combining Codes.
Chapter 19 Self-dual Codes and Invariant Theory.
Chapter 20 The Golay Codes.
Chapter 21 Association Schemes.
Appendix A. Tables of the Best Codes Known.
Appendix B. Finite Geometries.
Bibliography.
Index.