TY - GEN AU - Howell, John R. AU - Mengüc, M. Pinar AU - Daun, Kyle J. AU - Siegel, Robert TI - Thermal radiation heat transfer SN - 9780367347079 U1 - 621.4022 HOW/T PY - 2021/// CY - Boca Raton PB - CRC Press KW - Heat KW - Radiation and absorption KW - Transmission KW - Materials KW - Thermal properties N1 - Table of Contents: 1. Introduction to Radiative Transfer. 2. Radiative Properties at Interfaces. 3. Radiative Properties of Opaque Materials. 4. Configuration Factors for Diffuse Surfaces with Uniform Radiosity. 5. Radiation Exchange in Enclosures Composed of Black and/or Diffuse–Gray Surfaces. 6. Exchange of Thermal Radiation among Nondiffuse Nongray Surfaces. 7. Radiation Combined with Conduction and Convection at Boundaries. 8. Electromagnetic Wave Theory. 9. Properties of Participating Media. 10. Absorption and Scattering by Particles and Agglomerates. 11. Fundamental Radiative Transfer Relations and Approximate Solution Methods. 12. Participating Media in Simple Geometries. 13. Numerical Solution Methods for Radiative Transfer in Participating Media. 14. The Monte Carlo Method. Conjugate Heat Transfer in Participating Media. 15. Near-Field Thermal Radiation. 16. Radiative Effects in Translucent Solids, Windows, and Coatings. 17. Inverse Problems in Radiative Transfer. 18. Applications of Radiation Energy Transfer. Appendix A: Conversion Factors, Radiation Constants, and Blackbody Functions. Appendix B: Radiative Properties. Appendix C: Catalog of Selected Configuration Factors. Appendix D: Exponential Integral Relations and Two-Dimensional Radiation Functions N2 - The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. UR - https://doi.org/10.1201/9780429327308 ER -